從理論研究的角度上來說,能以一階鐵元素製造出強湮滅力場發生的基礎材料,對於探索特意現象、破解一階元素奧秘等,也會帶來非常大的幫助。
這些都是優勢。
當然了。
新的實驗組想要真正的發現,還需要時間以及很大的運氣成分,王浩短時間內倒是沒什麼期待。
在完成F射線新技術的研究後,他就回到大學裡進行常規的研究,大部分時間都是和黃震、丁志強、海倫以及保羅菲爾瓊斯等人,一起進行湮滅理論以及相關實驗現象的理論探討。
下午。
王浩正躺在椅子上,悠閒的喝著咖啡、看著電影。
丁志強走進辦公室高喊了一聲,“王老師,有新發現,可能和特異現象有關!”
王浩頓時坐了起來,問道,“什麼發現!”
“看這個!”
丁志強把平板電腦遞了過來,上面顯示的是新發型的《材料物理》的電子期刊。
其中有一篇研究論文,名字叫做《一階鐵元素外層電子異常研究》,是R本國立材料研究所的慄村吉雄完成的。
慄村吉雄研究一階鐵元素的過程中發現,一階鐵元素的外層電子活躍性‘不合常理’。
這種不合常理性表現在很多方面,比如,一階鐵元素更穩定的化學性態,比如,其金屬化合物擁有比常規鐵更低的電阻值。
研究中列舉了很多物理特性。
當對於這些物理特性做對比的時候,就發現有些物理特性表現是相反的。
比如,更穩定的化學形態,可能會意味著更高的電阻值。
這一條結論並不是肯定的,但好幾條放在一起,給人的感覺就很不一般的,對比其他常規元素的特性來說,“一階鐵元素以及其金屬化合物,電阻值理應更高而不是更低。”
這就是問題所在。
經過多個方面的論證以後,慄村吉雄的研究得出‘一階鐵元素外層電子活躍性異常’的結論。
“我覺得,這可能和特異現象有關!”
丁志強道,“這個研究找到了異常的地方。如果是常規的元素,外層電子不可能如此活躍。”
王浩思考著問道,“如果外層電子活躍,一定程度上,也可能會代表其化合物性態不穩定吧?”
“對。”
丁志強用力點頭,“但是,一階鐵的化合物,甚至要比常規鐵化合物性態還穩定的。”
他說的是化學鍵的穩定。
化學鍵的穩定表現就是,想要讓化學鍵分離就需要更大的能量,透過化學反應分離也會釋放更大的熱量。
王浩仔細思索著,忽然想到了另一個實驗。
何毅做湮滅力場材料實驗的時候,就發現有些一階鐵材料表現出的反重力特性很不一般。
在超過臨界溫度幾十K的時候,材料就能製造出微弱的反重力場。
兩者,是否有聯絡呢?