“沒錯。”
隨後看著一臉震驚的法拉第,徐雲又說道:
“法拉第先生,想要驗證熒光的帶電屬性其實很簡單,只要去驗證它們在電場磁場中會不會發生偏轉就可以了。”
“我們可以同時施加磁場和電場,使磁場力和電場力相互抵消,令它可以做直線運動,從而求出初始速度。”
“接著在得到初始速度後,撤掉電場,僅保留磁場。”
“若光線發生偏轉,只要測出射出磁場時的角度,就可以計算出其中粒子的荷質比。”
法拉第沉默許久,喉嚨裡隱隱發出了一陣‘嗬嗬’的不明聲。
過了許久。
他才面色複雜的撥出了一口氣濁氣,心中感慨萬千。
原來自己曾經離電磁波和電荷,竟然只有一線之隔啊......
要知道。
帶電粒子會在電場磁場中會偏轉,這個概念正是由他本人發現的。
可惜當時自己為了研究地磁垂直分量的問題,放棄了繼續提高真空管精度的想法。
從而與一個如此重要的成就失之交臂。
在他對面。
看著面色陰晴不定的法拉第,徐雲的表情有一些唏噓。
選修過物理史的讀者應該都知道。
法拉第在1838年研究輝光效應的時候,其實是有觀測過真空管在電磁場中的情況的。
但由於真空度問題,熒光最終沒有偏轉。
這裡用另一個例子解釋可能更好理解一點:
熒光就好像是一隊士兵,聽到命令後就要立刻前進十米。
要是在曠野....也就是完全真空的環境中,這隊士兵自然會輕鬆完成命令。
但若是他們身處人海,每個聽到命令計程車兵都要推開身邊的人群才能向前進,那就非常麻煩了。
人群密度不高的話可能只是有些困難。
但人群一旦特別密集,士兵們別說前進了,甚至只能被人群裹挾著漫無目的地四處亂走。
而真空管中的空氣分子就是人群,電場就是熒光偏轉的命令。
實驗用的真空管,就相當於不同人群密度的條件。
法拉第當時7%真空度的真空管依舊相當於鬧市,所以熒光並未有波動。
加強的蓋斯勒管則可以達到萬分之一真空度,熒光偏轉起來就非常容易了。
更關鍵的是......
與原本歷史不同。
在今天之前,徐雲已經用光電效應證明了電磁波的存在。
因此對面電流衍生體這種無色的‘光線’,徐雲只是輕輕一個提點,法拉第便想到了它的本質。
這由電流衍生出來的‘光’既然是電磁波,那麼它就肯定具備粒子性。
具備粒子性,又能在電磁場下偏轉......
這不是帶電電荷又是什麼?
當然了。
後世的讀者想必都很清楚。
這種在真空管內發光的正是陰極射線,原本會在1858年由普呂克發現,由戈爾德施泰因命名。
它的概念無需贅述,因為它的重要性在於幫助人類完成了早期對於射線的認知,後世的應用範圍也很廣。